Calcium channel blockers inhibit bacterial chemotaxis

Taku Matsushita, Hajime Hirata* and Iwao Kusaka

Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Yayoi 1-1-1, Tokyo 113, and *Department of Biochemistry, Jichi Medical School, Tochigi 329-04, Japan

Received 8 July 1988

The effect of several Ca^{2+} channel blockers, which inhibit the voltage-dependent Ca^{2+} uptake in *Bacillus subtilis*, on chemotactic behaviour of the bacterium was studied. Nitrendipine, verapamil, $LaCl_3$ and ω -conotoxin were tested and these blockers inhibited chemotactic behaviour in the bacterium toward L-alanine. Among these blockers, ω -conotoxin was the most effective inhibitor of chemotaxis. EGTA was also as effective as ω -conotoxin. In contrast, these blockers, did not inhibit the motility and the growth of the bacterium. These results suggest that internal Ca^{2+} plays an important role in the sensory system of bacterial chemotaxis.

Ca²⁺ channel blocker; ω-Conotoxin; Chemotaxis; Ca²⁺; (Bacillus subtilis)

1. INTRODUCTION

In eukaryotes, Ca2+ plays an important role in the regulation of a number of motile processes such as muscular contraction [1], cytoplasmic contraction [2] and ciliary reversal [3]. Ca2+ enters the cell through a voltage-dependent Ca2+ channel, which is specifically antagonized by Ca2+ channel blockers. In bacteria, the Ca2+ influx is also voltage dependent [4], and as described in the previous paper, the voltage-dependent Ca²⁺ uptake system in Bacillus subtilis is sensitive to Ca²⁺ channel blockers [5]. However, the role of internal Ca²⁺ in bacterial cells is not fully understood. Recently, it was reported that Ca2+ regulates chemotactic behaviour in B. subtilis [6], but the phenomenon has not been fully convincing. Here, we examined the effect of Ca²⁺ channel blockers of chemotaxis and motility in B. subtilis to investigate the role of Ca²⁺ in chemotactic behaviour.

Correspondence address: I. Kusaka, Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Yayoi 1-1-1, Tokyo 113, Japan

2. MATERIALS AND METHODS

2.1. Motile bacteria

Motile cells of *Bacillus subtilis* W23, Ade^- , Met^- were prepared as described by Ordal and Goldman [7]. *B. subtilis* was grown in Spizizen's minimal medium [8] containing 25 μ M adenine and 250 μ M methionine at 37°C. At the stationary phase, the cells were diluted 1:50 into mineral salt medium [7] containing 20 mM sorbitol, 0.3 mM L-alanine and required nutrients, grown at 37°C with shaking to an A_{660} value of 0.3 (early log phase), and then made 5 mM in sodium lactate and 0.05% in glycerol. After 15 min, the bacteria were centrifuged and washed twice with chemotaxis buffer (0.01 M potassium phosphate, pH 7.0, 0.14 mM CaCl₂, 0.3 mM (NH₄)₂SO₄, 0.1 mM EDTA, 5 mM sodium lactate and 0.05% glycerol).

2.2. Chemotaxis assay

2.2.1. Swarm agar plate method [9]

About 2×10^7 motile cells were deposited at the center of a swarm agar plate (0.2% agar) of mineral salts medium containing 2.0 mM L-alanine and a channel blocker. Photographs were taken after 10 h of incubation at 37°C.

2.2.2. Capillary method

Bacteria were washed and diluted with the chemotaxis buffer to a cell concentration of 3.5×10^6 cells per ml (bacterial suspension). Capillary assays were performed by the method of Adler [10] using 2- μ l microcapillaries at 37°C.

2.3. Measurement of motility

Motility of the bacterium was observed as described by Shioi

et al. [11]. The cells were suspended in the chemotaxis buffer to a concentration of 2×10^6 cells per ml. The movement of the bacteria on a glass slide was observed at 30°C with a dark field microscope and recorded with a high-speed videotape MHS-200 (nac, Japan). Swimming speed of the cells was measured from photographs taken from the videoscenes with an exposure time of 1 s.

3. RESULTS AND DISCUSSION

Previously, we have shown that the voltage-dependent uptake of Ca^{2+} in the membrane vesicles of *B. subtilis* was inhibited by Ca^{2+} channel blockers such as nitrendipine (10 μ M) or verapamil (25 μ M) [5]. In addition to these two kinds of blockers, a novel specific Ca^{2+} channel blocking peptide, ω -conotoxin, which has been recently isolated [12] and synthesized by the Peptide Institute, Protein Research Foundation (Japan) [13,14], was also used for the present study. ω -Conotoxin (5 μ M) also inhibited 60% of

the Ca^{2+} -uptake activity in the membrane vesicles of this organism (not shown). However, these blockers had no effect on the growth of *B. subtilis* even when the concentrations of these drugs (e.g., $50 \mu M$ of nitrendipine or $5 \mu M$ of ω -conotoxin) were higher than those sufficient for the complete inhibition of Ca^{2+} uptake (not shown).

We tested the effect of these drugs on chemotaxis in a semi-solid agar plate containing 2 mM L-alanine as an attractant. After 10 h of incubation at 37°C, the diameters of the rings which were formed by the migrated bacteria were directly compared. As shown in fig.1, the migration was inhibited 70% by 5 μ M ω -conotoxin, 52.5% by 0.5 μ M ω -conotoxin, 40% by 100 μ M verapamil, 52.5% by 25 μ M nitrendipine and 32.5% by 10 μ M nitrendipine. Inhibitory concentrations of these blockers were comparable to those for Ca²⁺-uptake activity as described above.

The chemotaxis of B. subtilis was also assayed

Fig. 1. Effect of Ca²⁺ channel blockers on chemotaxis in *Bacillus subtilis* toward L-alanine assayed by the swarm agar plate method. Each agar plate contained 2.0 mM L-alanine (A, control) and in addition, 5 μM ω-conotoxin (B); 0.5 μM ω-conotoxin (C); 100 μM verapamil (D); 25 μM nitrendipine (E); or 10 μM nitrendipine (F) was supplemented.

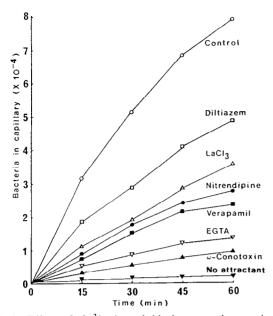


Fig. 2. Effect of Ca^{2+} channel blockers on chemotaxis in *Bacillus subtilis* assayed by the capillary method. A capillary containing 5 mM L-alanine is inserted into a bacterial suspension in chemotaxis buffer (\bigcirc), control. A capillary containing no attractant (\blacktriangledown). When the effect of channel blockers on the chemotaxis was assayed, each drug was added both in the capillary and in the bacterial suspension. (\Box) 100 μ M diltiazem; (\triangle) 100 μ M LaCl₃; (\bigcirc) 10 μ M nitrendipine; (\bigcirc) 100 μ M verapamil; (\bigcirc) 10 mM EGTA; (\bigcirc) 1 μ M ω -conotoxin.

by the capillary method. Fig.2 shows the effect of channel blockers on the migration of cells into the capillary containing 5 mM L-alanine as an attactant. When the capillary contained no attractant (the bottom curve, none), a very small number of bacteria entered the capillary (randomly swimming cells). When the capillary contained 5 mM Lalanine, motile bacteria were attracted into the capillary without any lag, and 8×10^4 cells were found in the capillary after 60 min. In the presence of 1 μ M ω -conotoxin, both in the capillary and in the bacterial suspension, only 4.5×10^3 cells had migrated into the capillary after 60 min, which corresponded to more than 90% inhibition of the chemotaxis. Almost the same effect was found with 10 μM nitrendipine (57% inhibition) and 100 μM verapamil (64% inhibition). Diltiazem, another Ca2+ channel blocker, also inhibited the migration (about 40% by 100 µM of the drug). On the other hand, 10 mM EGTA was as effective as $1 \mu M \omega$ -conotoxin. Since the media contained 0.14 mM of Ca²⁺, the free Ca²⁺ concentration was

Table 1

Effect of Ca²⁺ channel blockers on the motility of *Bacillus*subtilis

Ca ²⁺ channel blocker	Concentration (M)	Swimming speed ^a (µm/s)
None	_	29.4 ± 5.8
ω -Conotoxin	1×10^{-5}	28.6 ± 4.1
Nitrendipine	5×10^{-5}	30.4 ± 5.5
LaCl ₃	2.5×10^{-4}	30.0 ± 3.6
EGTA	1×10^{-2}	31.5 ± 7.5

[&]quot;Values are the mean ± one standard deviation

Measure of motility was carried out with more than 100 tracks as described in section 2. A correction of the cell size (about 7 μ m in average) was made to obtain the swimming speed of the cell

calculated to be 2.2 nM (based on the equation described in [6]) in the presence of 10 mM EGTA; therefore, the bacterium could not respond to the attractant when the free Ca²⁺ concentration was too low.

The effect of Ca^{2+} channel blockers on the motility of the bacterium was observed under a television monitor and is shown in table 1. Cells of *B. subtilis* moved about 30 μ M/s (control), and the values were almost the same in the cells containing 5 μ M ω -conotoxin, 50 μ M nitrendipine, 250 μ M LaCl₃ and 10 mM EGTA. Therefore, it was concluded that these blockers did not inhibit the motility of the bacterium.

Thus, various Ca²⁺ channel blockers inhibit chemotactic behaviour without any effect on either cell growth or motility. These results suggest that internal Ca²⁺ plays an important role in the sensory system of bacterial chemotactic behaviour, and they also suggest that Ca²⁺ may flow into bacterial cells through a Ca²⁺ channel-like system as in the excitable membranes of eukaryotes.

Acknowledgements: We thank the Peptide Institute, Protein Research Foundation (Japan) for providing the synthetic ω -conotoxin. The synthetic ω -conotoxin was developed through a collaboration between the Peptide Institute, Protein Research Foundation and the organizing group of Special Project Research on the Mechanism of Bioelectrical Response, which is supported by a Grant-in-Aid (61107004) from the Japanese Ministry of Education, Science and Culture.

REFERENCES

[1] Ebashi, S. and Endo, M. (1968) Prog. Biophys. Mol. Biol. 18, 123-183.

- [2] Taylor, D.L., Condeelis, J.S., Moore, P.L. and Allen, R.D. (1973) J. Cell Biol. 59, 378-394.
- [3] Schmidt, J.A. and Eckert, R. (1976) Nature 262, 713-715.
- [4] De Vrij, W., Bulthuis, R., Postma, E. and Konings, W.N. (1985) J. Bacteriol. 164, 1294-1300.
- [5] Kusaka, I. and Matsushita, T. (1987) J. Gen. Microbiol. 133, 1337-1342.
- [6] Ordal, G.W. (1977) Nature 270, 66-67.
- [7] Ordal, G.W. and Goldman, D.J. (1975) Science 189, 802-805.
- [8] Spizizen, J. (1958) Proc. Natl. Acad. Sci. USA 44, 1072-1078.

- [9] Adler, J. (1966) Science 153, 708-716.
- [10] Adler, J. (1973) J. Gen. Microbiol. 74, 77-91.
- [11] Shioi, J., Imae, Y. and Oosawa, F. (1978) J. Bacteriol. 133, 1083-1088.
- [12] Olivera, B.M., McIntosh, J.M., Cruz, L.J., Luque, F.A. and Gray, W.R. (1984) Biochemistry 23, 5087-5090.
- [13] Nishiuchi, Y., Kumagaye, K., Noda, Y., Watanabe, T.X. and Sakakibara, S. (1986) Biopolymers 25 (suppl.), 61-68.
- [14] River, J., Galyean, R., Gray, W.R., Azimi-Zonooz, A., McIntosh, J.M., Cruz, L.J. and Olivera, B.M. (1987) J. Biol. Chem. 262, 1194-1198.